个人简历:
洪堡学者(德国Fritz-Haber Institute,2002-2003)
访问学者 (美国City College of New York, 1997-1998)
博士(厦门大学,1998)
学士(厦门大学,1992)
人才计划:
国务院政府特殊津贴专家(2019)
福建省2016-2017年度高校领军人才(2018)
中组部领军人才(2016)
教育部特聘教授 (2016)
厦门市第九批拔尖人才(2016)
福建省第二批特殊支持“双百计划”(2016)
科技部“中青年科技创新领军人才”(2014)
国家杰出青年科学基金 (2008)
奖励情况:
国家自然科学二等奖(2019,第二完成人)
福建省运盛青年科技奖(2010)
福建省五四青年奖章(2010)
中国电化学青年奖(2007)
中国化学会青年化学奖(2004)
行政任职:
厦门大学化学化工学院副院长(2019-)
固体表面物理化学国家重点实验室副主任 (2012-)
学术兼职:
《Analytical Chemistry》副主编 (2016-)
《光散射学报》副主编 (2009-)
《J. Phys. Chem.》Advisory Board Members (2019-)
《物理化学学报》编委(2020-)
《电化学》编委 (2011-)
中国物理学会光散射专业委员会主任(2014-2018),委员(2019-)
国际拉曼光谱大会指导委员会委员(International Conference on Raman Spectroscopy, Steering Committee Members)(2014-)
亚洲光谱大会指导委员会委员(Asian Spectroscopy Conference, Steering Committee Members)(2014-)
中国化学会电化学委员会物理电化学分会主席 (2017-)
研究兴趣:
针尖增强拉曼光谱,表面增强拉曼光谱,光谱电化学,纳米电化学,电催化,表界面过程和机制,精准化学测量,单分子光谱和电化学检测,纳米光学
课题组成员:
王翔(副教授,南强拔尖B类人才),刘川 高级工程师,胡仁 高级工程师
合作者:刘国坤(环境生态学院),王磊,范贤光,王昕(航空航天学院)
近期主要代表论著:
1. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. S. Hu, J. Yi, Y. J. Zhang, K. Q. Lin, B. J. Liu, L. Chen, C. Zhan, Z. C. Lei, J. J. Sun, C. Zong, J. F. Li, B. Ren*, Nature Commun., 2020, 11, 2518.
2. Buoyant particulate strategy for few-to-single particle-based plasmonic enhanced nanosensors. D. Zhang, L. Peng, X. Shang, W. Zheng, H. You, T. Xu, B. Ma, B. Ren*, J. Fang*, Nature Commun., 2020, 11, 2603.
3. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. X. Wang, S. C. Huang, S. Hu, S. Yan, Bin Ren*, Nature Rev. Phys., 2020, 2, 253.
4. Probing the local generation and diffusion of active oxygen species on a Pd/Au bimetallic surface by tip-enhanced Raman spectroscopy. H. S. Su, H. S. Feng, Q. Q. Zhao, X. G. Zhang, J. J. Sun, Y. H. He, S. C. Huang, T. X. Huang, J. H. Zhong*, D. Y. Wu, B. Ren*, J. Am. Chem. Soc., 2020, 142, 1341.
5. Probing the edge-related properties of atomically thin MoS2 at nanoscale. T. X. Huang, X. Cong, S. S. Wu, K. Q. Lin, X. Yao, Y. H. He, J. B. Wu, Y. F. Bao, S. C. Huang, X. Wang*, P. H. Tan*, B. Ren*, Nature Commun., 2019, 10, 5544.
6. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. C. Zhan, B. W. Liu, Y. F. Huang, S. Hu, B. Ren*, M. Moskovits*, Z. Q. Tian*, Nature Commun., 2019, 10, 2671.
7. Speeding up the line-Scan Raman imaging of living cells by deep convolutional neural network. H. He, M. Xu, C. Zong, P. Zheng, L. Luo, L. Wang*, B Ren, Anal. Chem., 2019, 91, 7070.
8. Quantifying surface temperature of thermoplasmonic nanostructures. S. Hu, B. J. Liu, J. M. Feng, C. Zong, K. Q. Lin, X. Wang, D. Y. Wu, B. Ren*, J. Am. Chem. Soc., 2018, 140, 13680.
9. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. C. Zong, M. X. Xu, L.J. Xu, T. Wei, X. Ma, X.S. Zheng, R. Hu, B. Ren*, Chem. Rev., 2018, 118, 4946.
10. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. X. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang,* B. Ren*, Adv. Mater., 2018, 30, 1706031.
11. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering, K. Q. Lin, Jun Yi, J. H. Zhong, S. Hu, B. J. Liu, J. Y. Liu, C. Zong, Z. C. Lei, X. Wang*, J. Aizpurua, R. Esteban*, B. Ren*, Nature Commun., 2017, 8, 14891.
12. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution, J. H. Zhong, X. Jin, L. Meng, X. Wang, H. S. Su, Z. L. Yang, C. T. Willams, B. Ren*, Nature Nanotechnol., 2017, 12, 132.
13. Tip-enhanced Raman spectroscopy for surfaces and interfaces. X. Wang, S. C. Huang, T. X. Huang, H. S. Su, J. H. Zhong, Z. C. Zeng, C. Zong, M. H. Li, B. Ren, Chem. Soc. Rev., 2017, 46, 4020.
14. Electrochemical tip-enhanced Raman spectroscopy. Z. C. Zeng, S. C. Huang, D. Y. Wu, L. Y. Meng, M. H. Li, T. X. Huang, J. H. Zhong, X. Wang, Z. L. Yang, B. Ren*, J. Am. Chem. Soc., 2015, 137, 11928.
15. Transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS): a millisecond time-resolved study of an electrochemical redox process. C. Zong, C. J. Chen, M. Zhang, D. Y. Wu, B. Ren*, J. Am. Chem. Soc., 2015, 137, 11768.
16. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards. W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, B. Ren*, Angew. Chem. Int. Ed., 2015, 54, 7308.
17. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. L. Xu, Z. Lei, J. Li, C. Zong, C. Yang, B. Ren*, J. Am. Chem. Soc., 2015, 137, 5149.
18. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. H. Zhong, J. Zhang, X. Jin, J. Y. Liu, Q. Y. Li, M. H. Li, W. W. Cai, D. Y. Wu, D. P. Zhan*, B. Ren*, J. Am. Chem. Soc., 2014, 136,16609.
19. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances, Y. F. Huang, M. Zhang, L. B. Zhao, J. M. Feng, D. Y. Wu*, B. Ren*, Z. Q. Tian, Angew. Chem. Int. Ed., 2014, 53, 2353.
20. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. X. Wang, M. Li, L. Meng, K. Lin, J. Feng, T. Huang, Z. L. Yang,* B. Ren*, ACS Nano, 2014, 8, 528.